Leprosy
Leprosy
Leprosy is caused by *M. leprae* and predominantly affects the skin and peripheral nerves.
Immunopathologic Spectrum

Leprosy
The sequence of disease pathogenesis is complex, very chronic, and depends on host-parasite immunologic responses. The disease spectrum includes tuberculoid (TT), borderline tuberculoid (BT), lepromatous (LL), and borderline lepromatous (BL) leprosy. The term "borderline" is used to denote patterns that share some features of both tuberculoid and lepromatous leprosy.
TT and LL patients are stable, the former often self-healing and the latter remaining heavily infected unless given appropriate chemotherapy.
Leprosy = ﺍﻨﺠذاﻢ

absence of treatment. The central point of the spectrum (BB) is the patients presented with widespread dysesthesia.

It is likely that in endemic zones, a high proportion of people are infected by M. leprae, a high proportion of people are infected by M. tuberculosis, and no disease or have developed indeterminate leprosy. Indeterminate leprosy is used to describe patients presenting with very early lesions that cannot be definitively categorized along the immunopathologic spectrum (e.g., cannot be determined as BT or LL).
Staining of Mycobacterium leprae Bacilli
The classical method for demonstrating leprosy bacilli in lesions is a modified Ziehl-Neelsen stain, where the degree of bacillary index (BI) follows Ridley's logarithmic scale (which applies to both skin biopsies and slit skin smears).

\[\text{BI} = 0: \text{no bacilli observed} \]
Leprosy = اﻠﺠذاﻢ

- BI = 1: 1 to 10 bacilli in 10 to 100 high-power fields (hpf, oil immersion)
- BI = 2: 1 to 10 bacilli in 1 to 10 hpf
- BI = 3: 1 to 10 bacilli per hpf
- BI = 4: 10 to 100 bacilli per hpf
- BI = 5: 100 to 1,000 bacilli per hpf
- BI = 6: >1,000 bacilli per hpf
Solid-staining bacilli indicate that the organisms are capable of multiplication. Fragmented (beaded) and granular acid-fast bacilli indicate that they are dead. Patients with no bacilli detectable in lesions are termed *paucibacillary*; those with some or many bacilli are *multibacillary* (this distinction is important in determining the duration of chemotherapy).

Immunocytochemical methods for demonstrating mycobacterial antigens have a limited role. The most frequently used is a...
Clinical Pathology of Leprosy

For general discussions of clinical leprosy and leprosy pathology, the reader is referred to Job (147) and...
Early, Indeterminate Leprosy

Many patients present with obvious or advanced skin and peripheral nerve lesions (the latter are primarily nerve loss).
Histopathology

There is mild lymphocytic and macrophage accumulation around neurovascular bundles, the superficial and deep dermal vessels, sweat glands, and erector pili muscle; focal lymphocytic invasion in
A distinctive variant of lepromatous leprosy, the histoid type, first described in 1963. Rarely, lepromatous leprosy can present as a single lesion rather than as multiple lesions (150).
Histopathology.

Lepromatous leprosy, in the usual macular or infiltrative-nodular lesions, exhibits an extensive cellular infiltrate that is composed of T lymphocytes, B lymphocytes, and macrophages. The macrophages have abundant eosinophilic cytoplasm and contain a mixed population of solid and fragmented bacilli (Bacillus cereus) (Figs. 21-33). The bacilli, on Ziehl-Neelsen staining, can be seen to measure about 5.0 by 0.5 μm and if solid may form epithelioid cell granulomas. Lymphocyte infiltration is not prominent, but there may be many plasma cells.
In time, and with anti mycobacterial chemotherapy, degenerate bacilli accumulate in the macrophages—the so-called lepra ... bacilli are fragmented or granular and, especially in very chronic lesions, disposed in large basophilic clumps called globi.

In lepromatous leprosy, in contrast to tuberculoid leprosy, the nerves in the skin may contain considerable numbers of leprosy bacilli but remain well preserved for a long time and slowly become fibrotic.
Leprosy = اﻠﺠذاﻢ
Leprosy = ��ٽٽ
Histoid Leprosy

Histoid leprosy shows the highest loads of bacilli (frequently, the BI is 6), and the majority are solid staining.
The important difference between LL and BL leprosy histology is that in BL, the lymphocytes are more prominent and there are fewer granulomas. Foamy cells are not prominent, and globi do not usually accumulate; the Bl ranges from 4 to 5.
Midborderline Leprosy

In midborderline (BB) leprosy, the skin lesions are irregularly dispersed and shaped erythematous plaques.
Histopathology. In BB leprosy, the macrophages are uniformly activated to epithelioid cells but are not focalized into distinct aggregates. There are no Langhans giant cells. The Bl ranges from 3 to 4. Dermal edema is prominent between the inflammatory cells.

Borderline Tuberculoid Leprosy
In borderline tuberculoid (BT) leprosy, the lesions are asymmetrical and may be scanty. They are dry, hairless plaques with central hypopigmentation. Nerve enlargement is usually found, and the lesions are usually anesthetic.

Histopathology

Granulomas with peripheral lymphocytes follow the neurovascular bundles and infiltrate sweat glands and erector pili muscles. Langhans giant cells are variable in number.
and are not large in size. Granulomas along the superficial vascular plexus are frequent, but they do not

Tuberculoid Leprosy
The skin lesions of tuberculoid (TT) leprosy are scanty, dry, erythematous, hypopigmented papules or plaques with sharply defined edges. They range in size from 1 to 5 mm, with a mean of 2.5 mm. Thickened local peripheral nerves may be found. The lesions heal rapidly on chemotherapy.

Histopathology
Primary TT leprosy has large epithelioid cells arranged in compact granulomas and...
Peripheral Nerves

In all of these patterns of leprosy, the major peripheral nerves are often undergoing parallel pathologies.
Leprosy Reactions

Leprosy reactions are classified into two main types (1 and 2). A third reaction is specific to Lucio multibacillary leprosy...
Type 1 Reactions
Because the immunopathologic spectrum of leprosy is a continuum, patients may react along it in either direction. Shifts toward the tuberculoid pole are called **upgrading** or **reversal reactions**; shifts toward the lepromatous pole are termed **downgrading reactions**. Both are aspects of delayed hypersensitivity, or type 1, leprosy reactions. TT patients are stable. BT patients may show a more severe reaction, which is damaging. At worst, there is caseous necrosis of large peripheral nerves resulting from upgrading reactions.
The histopathology of type 1 reactions has still not been well evaluated.

Histopathology
there is edema within and about the granulomas and proliferation of fibrocytes in the dermis. In upgrading reactions, who upgrade on therapy show old foamy macrophages and degenerate bacilli admixed with new epithelioid cell granulomas.
type 2 Reaction: Erythema Nodosum Leprosum

Erythema nodosum leprosum (ENL) occurs most commonly in LL leprosy and less frequently in BL leprosy.
On the skin, tender, red plaques and nodules together with areas of erythema, and occasionally also purpuric plaques, are present, usually in well-defined zones, on the face, hands, feet, and ears. The lesions are persistent, often lasting for weeks and even years in others. This is the only type of reactional leprosy that responds to treatment with thalidomide.

Histopathology. In ENL, the lesions are foci of acute inflammation superimposed on chronic multibacillary leprosy. Polymorph neutrophils are numerous, and there is a granulomatous reaction, with giant cells and a mixed inflammatory infiltrate. There is no bacilli present. On Wade-Fite staining, macrophages have a granular pink hue, indicating mycobacterial debris.
anti mycobacterial immunocytochemical stain (e.g., anti-BCG) will indicate abundant antigen. A necrotizing vasculitis affecting arterioles, venules, and capillaries occurs in some cases of ENL; these patients may have superficial ulceration.

Lucio Reaction
The Lucio reaction occurs exclusively in diffuse lepromatous leprosy, in which it is a fairly common complication. It usually occurs in patients who have received either no treatment or inadequate treatment. In contrast to ENL, fever, ... particularly on the legs, into ulcers. There may be repeated attacks or continuous appearance of new lesions for years.

Histopathology. In the Lucio reaction, vascular changes are critical. Endothelial proliferation leads to luminal obliteration, leading to hemorrhagic infarcts and results in crusted erosions or frank ulcers.
Electron Microscopy of Leprosy
Under electron microscopy, *M. leprae* can be seen to consist of an electron-dense cytoplasm lined by a trilaminal plasma membrane. Outside of this membrane, Lepra bacilli are found in the skin, predominantly in macrophages and in Schwann cells.

Pathogenesis of Leprosy
With respect to immunologic reactivity, patients with lepromatous leprosy have a defect in cell-mediated immune responses ... bacilli and thus do not adequately activate macrophages to destroy phagocytosed bacilli. This defect is specific for M. leprae, because patients with lepromatous leprosy show normal immunologic responses to antigens other than lepromin in both in vivo and in vitro testing.
The specific inability of T lymphocytes obtained from patients with lepromatous leprosy to react against lepromin is accompanied by a significant increase in the lymphocyte response to lepromin during the reaction and a decrease during the postreaction phase.
Analysis of T-cell subsets in lesions has shown that in tuberculoid leprosy, with its high degree of resistance to mycobacterial infection, the distribution of helper and suppressor T cells is similar to that observed in sarcoidosis.
Leprosy = اﻠﺠذاﻢ
In patients with either ENL or the Lucio reaction, deposits of IgG and the third component of complement.
The lepromin skin test, or Mitsuda test, consists of the intradermal injection of a preparation of M. leprae derived from autoclaved infected human tissue. A positive reaction consists of the formation of a nodule measuring...